STRUCTURAL DEPTH

- American Institute of Steel Construction. (2006). *Manual of Steel Construction LRFD/ASD, 13th Edition.*
- American Society of Civil Engineers. (2005). ASCE 7-05, *Minimum Design Loads for Buildings and Other Structures.*

Chen, Wai-Fah. Practical Analysis for Semi-Rigid Frame Design. World Scientific, 2000.

- Packer, Jeffrey, and Tabitha Stine. "The Future of HSS Connection Design." Modern Steel Construction 6 Feb. 2006. 10 Feb. 2008 http://www.modernsteel.com/Uploads/Issues/February_2006/30750_stine_and_packer_web.pdf>.
- RS Means Building Construction Cost Data 2007
- "Welding Symbols." Welding.Com. 11 Mar. 2008 http://www.welding.com/weld_symbols_welding_symbols.shtml>.
- Williams, Alan. *Civil and Structural Engineering: Seismic Design of Buildings and Bridges.* Kaplan AEC Engineering, 2004.

ARCHITECTURAL BREADTH

- "Energy Studies." *Energy Sustainability Unit*. 2005. 23 Feb. 2008 http://www.esu.com.sg/tools3.html.
- Innovation Park At Penn State. 2002. The Pennsylvania State University. Spring 2008 http://www.innovationpark.psu.edu/.
- "R-Value Table." Table. *ColoradoEnergy.Org*. Feb.-Mar. 2008 http://www.coloradoenergy.org/procorner/stuff/r-values.htm>.

MECHANICAL BREADTH

- ANSI/ASHRAE, Standard 62.1 2004, Ventilation for Acceptable Indoor Air Quality. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc., Atlanta, GA. 2004.
- Dardano, Sam. "HVAC Equipment Sizing Calcs." *Built Green* (2008). 10 Feb. 2008 http://www.builtgreen.org/articles/0308_HVAC_sizing.htm.
- "Friction Lost in Ducts." *The Engineering Toolbox*. 2005. Spring 2008 http://www.engineeringtoolbox.com/duct-friction-pressure-loss-d_444.html.

I would like to extend a generous thank you to the following people:

- **Chris Bowers**, of L. Robert Kimball & Associates, for providing me with the structural documents needed, and for responding to my numerous e-mails and being so helpful.
- **Chad Brinkley,** of C.B. Richard Ellis, for allowing me to use 329 Innovation Boulevard as the subject of numerous studies and ultimately the subject of my thesis.
- **Rob O'Donnell,** of Robert E. Lamb Inc., for meeting with me to review and provide ideas for my senior thesis. And thanks to Mike and Chad for reviewing my technical assignments.
- **Professor M. Kevin Parfitt**, for all the work that has been put into thesis year after year, and for being my advisor.
- **The AE Faculty,** for making yourselves available to not only mine but my peers' questions, and for instilling me the knowledge that I will use for the rest of my life.
- **My Parents,** for providing endless amounts of support and still loving me after I drained your wallets for five years. Love ya!
- **The Rest of My Family,** for pretending to understand what I'm talking about. That read, I'll be proud if you get this far!
- Janitor Rich, Master of the Custodial Arts, for keeping things ex-siiiiiiiiting, and the lab clean, we know you're not slaves.
- **"Batty the Bat",** for paying an early morning visit one day in the lab and returning later. Hope Tom didn't hurt you with his bat shield and leprechaun flute.

And last, but not least,

My Fellow AE's, for making the past four years the most enjoyable experience of my life. Thanks for all the friendships, the laughs, the help, the parties, and putting up with me. May the future hold nothing but good things for all of you!

THANK YOU!

APPENDICES

A. STRUCTURAL APPENDIX

CALCULATIONS

Numerous calculations are available upon request, they include:

- o Lateral Loads
 - Story Forces
 - Story Shears
- o RAM Structural System Output
- o RAM Structural System Models
- o RAM Structural System Hand Calcs (Spot-Checks)
- o Connection Hand Calculations
- o Trace 700 Output

This Appendix includes RAM Output utilized in the report.

RAM DESIGN PARAMETERS

THE BEAMS WERE DESIGNED AS NONCOMPOSITE.

ASCE SEISMIC VALUES

Seismic Force-Resisting System	ASCE 7 Section where	Response	System	Deflection		Structural System Limitations and Building Height (ft) Limit ^e				
and an in the residence of the data of the state of the s	Detailing Requirements are Specified	Modification Coefficient, R ^e	Overstrength Factor, Ω ₀ g	Amplification Factor, Cd ^b		Seisn	nic Des	Design Category		
	are opechied	Coencient, H	Factor, 110*	Pactor, Ca	в	с	Dď	Ed	F.	
E. DUAL SYSTEMS WITH INTERMEDIATE MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESCRIBED SEISMIC FORCES	12.2.5.1									
 Special steel concentrically braced frames^f 	14.1	6	21/2	5	NL	NL	35	NP	NP ^{h,k}	
2. Special reinforced concrete shear walls	14.2	61/2	21/2	5	NL	NL	160	100	100	
 Ordinary reinforced masonry shear walls 	14.4	3	3	21/2	NL	160	NP	NP	NP	
 Intermediate reinforced masonry shear walls 	14.4	31/2	3	3	NL	NL	NP	NP	NP	
Composite steel and concrete concentrically braced frames	14.3	51/2	21/2	41/2	NL	NL	160	100	NP	
6. Ordinary composite braced frames	14.3	31/2	21/2	3	NL	NL	NP	NP	NP	
 Ordinary composite reinforced concrete shear walls with steel elements 	14.3	5	3	41/2	NL	NL	NP	NP	NP	
 Ordinary reinforced concrete shear walls 	14.2	51/2	21/2	41/2	NL	NL	NP	NP	NP	
E SHEAR WALL-FRAME INTERACTIVE SYSTEM WITH ORDINARY REINFORCED CONCRETE MOMENT FRAMES AND ORDINARY REINFORCED CONCRETE SHEAR WALLS	12.2.5.10 and 14.2	41/2	21/2	4	NL	NP	NP	NP	NP	
G. CANTILEVERED COLUMN SYSTEMS DETAILED TO CONFORM TO THE REQUIREMENTS FOR:	12.2.5.2									
1. Special steel moment frames	12.2.5.5 and 14.1	21/2	11/4	21/2	35	35	35	35	35	
2. Intermediate steel moment frames	14.1	11/2	11/4	11/2	35	35	35 ^h	NP ^{h,1}	NP ^{h,i}	
3. Ordinary steel moment frames	14.1	11/4	11/4	11/4	35	35	NP	$NP^{h,i}$	NP ^{h,i}	
 Special reinforced concrete moment frames 	12.2.5.5 and 14.2	21/2	11/4	21/2	35	35	35	35	35	
5. Intermediate concrete moment frames	14.2	11/2	11/4	11/2	35	35	NP	NP	NP	
6. Ordinary concrete moment frames	14.2	1	11/4	1	35	NP	NP	NP	NP	
7. Timber frames	14.5	11/2	11/2	11/2	35	35	35	NP	NP	
H. STEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE, EXCLUDING CANTILEVER COLUMN SYSTEMS	14.1	3	3	3	NL	NL	NP	NP	NP	

TABLE 12.2-1 DESIGN COEFFICIENTS AND FACTORS FOR SEISMIC FORCE-RESISTING SYSTEMS (continued)

Response modification coefficient, R, for use throughout the standard. Note R reduces forces to a strength level, not an allowable stress level.

¹ Reflection amplification factor, *C_d*, for use information in the standard. Note *R* before to a strength level, not an anowable stress level. ⁶ Reflection amplification factor, *C_d*, for use in Sections 12.8.6, 12.8.7, and 12.9.2 ⁶ NL = Not Limited and NP = Not Permitted. For metric units use 30.5 m for 100 ft and use 48.8 m for 160 ft. Heights are measured from the base of the structure as defined in Section 11.2. ^d See Section 12.2.5.4 for a description of building systems limited to buildings with a height of 240 ft (73.2 m) or less. ^d See Section 12.2.5.4 for building systems limited to buildings with a height of 160 ft (48.8 m) or less. ^f Ordinary moment frame is permitted to be used in lieu of intermediate moment frame for Seismic Design Categories B or C.

⁴ Ordinary moment rame is permitted to be used in neu or intermediate momentariane for besign Categories B or C.
⁴ The tabulated value of the overstrength factor, Ω₀, is permitted to be reduced by subtracting one-half for structures with flexible diaphragms, but shall not be taken as less than 2.0 for any structure.
⁴ See Sections 12.2.5.6 and 12.2.5.9 for limitations for steel OMFs and IMFs in structures assigned to Seismic Design Category D or E.
⁵ See Sections 12.2.5.8 and 12.2.5.9 for limitations for steel OMFs and IMFs in structures assigned to Seismic Design Category F.
⁵ See Sections 12.2.5.0 and 12.2.5.9 for limitations for steel OMFs and IMFs in structures assigned to Seismic Design Category F.
⁵ See Sections 12.2.5.0 and 12.2.5.9 for limitations for steel OMFs and IMFs in structures assigned to Seismic Design Category F.
⁵ See Sections 12.2.5.0 and 12.2.5.9 for limitations for steel OMFs and IMFs in structures assigned to Seismic Design Category F.
⁵ See Sections 12.2.5.0 and 12.2.5.9 for limitations for steel OMFs and IMFs in structures assigned to Seismic Design Category F.
⁵ See Sections 12.2.5.0 and 12.2.5.9 for limitations for steel OMFs and IMFs in structures assigned to Seismic Design Category F.

exceed 20 psf (0.96 kN/m²) and in penthouse structures. ^kIncrease in height to 45 ft (13.7 m) is permitted for single story storage warehouse facilities.

dual systems, the more stringent system limitation contained in Table 12.2-1 shall apply and the design shall comply with the requirements of this section.

12.2.3.1 R, C_d , and Ω_0 Values for Vertical Combinations. The value of the response modification coefficient, R, used for design at any story shall not exceed the lowest value of R that is used in the same direction at any story above that story. Likewise, the deflection amplification factor, C_d , and the system over strength factor, Ω_0 , used for the design at any story shall not be less than the largest value of this factor that is used in the same direction at any story above that story.

EXCEPTIONS:

1. Rooftop structures not exceeding two stories in height and 10 percent of the total structure weight.

12.7.4 Interaction Effects. Moment-resisting frames that are enclosed or adjoined by elements that are more rigid and not considered to be part of the seismic force-resisting system shall be designed so that the action or failure of those elements will not impair the vertical load and seismic force-resisting capability of the frame. The design shall provide for the effect of these rigid elements on the structural system at structural deformations corresponding to the design story drift (Δ) as determined in Section 12.8.6. In addition, the effects of these elements shall be considered where determining whether a structure has one or more of the irregularities defined in Section 12.3.2.

12.8 EQUIVALENT LATERAL FORCE PROCEDURE

12.8.1 Seismic Base Shear. The seismic base shear, V, in a given direction shall be determined in accordance with the following equation:

$$V = C_s W \tag{12.8-1}$$

where

 C_s = the seismic response coefficient determined in accordance with Section 12.8.1.1

W = the effective seismic weight per Section 12.7.2.

12.8.1.1 Calculation of Seismic Response Coefficient. The seismic response coefficient, C_{s} , shall be determined in accordance with Eq. 12.8-2.

$$C_s = \frac{S_{DS}}{\left(\frac{R}{I}\right)} \tag{12.8-2}$$

where

- S_{DS} = the design spectral response acceleration parameter in the short period range as determined from Section 11.4.4
 - R = the response modification factor in Table 12.2-1
 - I = the occupancy importance factor determined in accordance with Section 11.5.1

The value of C_s computed in accordance with Eq. 12.8-2 need not exceed the following:

$$C_{r} = \frac{S_{D1}}{T\left(\frac{R}{I}\right)} \quad \text{for } T \le T_{L}$$
(12.8-3)

$$C_s = \frac{S_{D1}T_L}{T^2\left(\frac{R}{I}\right)} \quad \text{for } T > T_L \tag{12.8-4}$$

 C_s shall not be less than

$$C_s = 0.01$$
 (12.8-5)

In addition, for structures located where S_1 is equal to or greater than 0.6g, C_s shall not be less than

$$C_s = \frac{0.5S_1}{\left(\frac{R}{I}\right)} \tag{12.8-6}$$

Minimum Design Loads for Buildings and Other Structures

TABLE 12.8-1	COEFFICIENT	FOR UPPER LIMIT
ON	CALCULATED	PERIOD

Design Spectral Response Acceleration Parameter at 1 s, <i>Sp</i> 1	Coefficient Cu
≥ 0.4	1.4
0.3	1.4
0.2	1.5
0.15	1.6
≤ 0.1	1.7

where I and R are as defined in Section 12.8.1.1 and

- S_{D1} = the design spectral response acceleration parameter at a period of 1.0 s, as determined from Section 11.4.4
 - T = the fundamental period of the structure (s) determined in Section 12.8.2
- $T_L =$ long-period transition period (s) determined in Section 11.4.5
- S_1 = the mapped maximum considered earthquake spectral response acceleration parameter determined in accordance with Section 11.4.1

12.8.1.2 Soil Structure Interaction Reduction. A soil structure interaction reduction is permitted where determined using Chapter 19 or other generally accepted procedures approved by the authority having jurisdiction.

12.8.1.3 Maximum S_s Value in Determination of C_s . For regular structures five stories or less in height and having a period, T, of 0.5 s or less, C_s is permitted to be calculated using a value of 1.5 for S_s .

12.8.2 Period Determination. The fundamental period of the structure, T, in the direction under consideration shall be established using the structural properties and deformational characteristics of the resisting elements in a properly substantiated analysis. The fundamental period, T, shall not exceed the product of the coefficient for upper limit on calculated period (C_u) from Table 12.8-1 and the approximate fundamental period, T_a , determined from Eq. 12.8-7. As an alternative to performing an analysis to determine the fundamental period, T_a , it is permitted to use the approximate building period, T_a , calculated in accordance with Section 12.8.2.1, directly.

12.8.2.1 Approximate Fundamental Period. The approximate fundamental period (T_a) , in s, shall be determined from the following equation:

$$T_a = C_t h_n^x \tag{12.8-7}$$

where h_n is the height in ft above the base to the highest level of the structure and the coefficients C_t and x are determined from Table 12.8-2.

TABLE 12.8-2 VALUES OF APPROXIMATE PERIOD PARAMETERS Ct AND x

Structure Type	Ct	x
Moment-resisting frame systems in which the frames resist 100% of the required seismic force and are not enclosed or adjoined by components that are more rigid and will prevent the frames from deflecting where subjected to seismic forces:		
Steel moment-resisting frames	0.028 (0.0724) ^a	0.8
Concrete moment-resisting frames	0.016 (0.0466) ^a	0.9
Eccentrically braced steel frames	0.03 (0.0731) ^a	0.75
All other structural systems	0.02 (0.0488) ^a	0.75

^aMetric equivalents are shown in parentheses.

1.00

RAM Frame v11.2 DataBase: 329 Inn Blvd Expansion Building Code: IBC

CRITERIA:

Rigid End Zones:	Ignore E	ffects	
Member Force Out	put: At Fa	ce of Joint	
P-Delta:	Yes	Scale Factor:	
Diaphragm:	Rigid		
Ground Level:	Base		

LOAD CASE DEFINITIONS:

D	DeadLoad	RAMUSER
Lp	PosLiveLoad	RAMUSER
W1	Wind	W_User
E1	Siesmic	EQ_User
W2	COMP WIND	Wind_IBC06_1_X
W3	COMP WIND	Wind_IBC06_1_Y
W4	COMP WIND	Wind_IBC06_2_X+E
W5	COMP WIND	Wind_IBC06_2_X-E
W6	COMP WIND	Wind_IBC06_2_Y+E
W7	COMP WIND	Wind_IBC06_2_Y-E
W8	COMP WIND	Wind_IBC06_3_X+Y
W9	COMP WIND	Wind_IBC06_3_X-Y
W10	COMP WIND	Wind_IBC06_4_X+Y_CW
W11	COMP WIND	Wind_IBC06_4_X+Y_CCW
W12	COMP WIND	Wind_IBC06_4_X-Y_CW
W13	COMP WIND	Wind_IBC06_4_X-Y_CCW

RESULTS:

Location (ft): (60.001, 61.184)

Story	LdC	Disp	olacement	Story Drift		D	rift Ratio
		Х	Y	Х	Y	Х	Y
		in	in	in	in		
SIXTH	D	-0.0019	-0.0023	-0.0002	-0.0002	0.0000	0.0000
	Lp	-0.0079	-0.0038	-0.0017	-0.0003	0.0000	0.0000
	W1	-0.2144	0.6243	-0.0587	0.1066	0.0003	0.0006
	E1	-0.0553	0.1550	-0.0154	0.0280	0.0001	0.0001
	W2	0.3132	-0.0505	0.0470	-0.0135	0.0002	0.0001
	W3	-0.1121	0.3371	-0.0295	0.0490	0.0002	0.0003
	W4	0.2381	-0.0259	0.0357	-0.0084	0.0002	0.0000
	W5	0.2317	-0.0499	0.0348	-0.0118	0.0002	0.0001
	W6	-0.0995	0.1956	-0.0244	0.0287	0.0001	0.0001
	W7	-0.0687	0.3102	-0.0199	0.0449	0.0001	0.0002
	W8	0.1508	0.2150	0.0131	0.0267	0.0001	0.0001
	W9	0.3190	-0.2908	0.0574	-0.0469	0.0003	0.0002

<u>Drift</u>

RAM Frame v11.2 DataBase: 329 Inn Blvd Expansion Building Code: IBC

Story	LdC	Disi	olacement	5	Story Drift	D	rift Ratio
	W10	0.1271	0.2132	0.0118	0.0274	0.0001	0.0001
	W11	0.0991	0.1093	0.0078	0.0126	0.0000	0.0001
	W12	0.2533	-0.1661	0.0450	-0.0278	0.0002	0.0001
	W13	0.2253	-0.2700	0.0410	-0.0425	0.0002	0.0002
FIFTH	D	-0.0017	-0.0021	-0.0006	-0.0010	0.0000	0.0000
	Lp	-0.0061	-0.0035	-0.0021	-0.0020	0.0000	0.0000
	W1	-0.1556	0.5178	-0.0471	0.1061	0.0003	0.0006
	E1	-0.0399	0.1270	-0.0122	0.0283	0.0001	0.0002
	W2	0.2662	-0.0371	0.0505	-0.0115	0.0003	0.0001
	W3	-0.0826	0.2881	-0.0246	0.0546	0.0001	0.0003
	W4	0.2024	-0.0175	0.0384	-0.0067	0.0002	0.0000
	W5	0.1969	-0.0381	0.0374	-0.0105	0.0002	0.0001
	W6	-0.0752	0.1669	-0.0209	0.0317	0.0001	0.0002
	W7	-0.0488	0.2653	-0.0160	0.0501	0.0001	0.0003
	W8	0.1377	0.1883	0.0194	0.0323	0.0001	0.0002
	W9	0.2617	-0.2439	0.0563	-0.0495	0.0003	0.0003
	W10	0.1153	0.1858	0.0168	0.0326	0.0001	0.0002
	W11	0.0913	0.0966	0.0123	0.0159	0.0001	0.0001
	W12	0.2082	-0.1383	0.0445	-0.0288	0.0003	0.0002
	W13	0.1843	-0.2275	0.0400	-0.0455	0.0002	0.0003
FOURTH	D	-0.0011	-0.0011	-0.0006	-0.0009	0.0000	0.0000
	Lp	-0.0041	-0.0015	-0.0019	-0.0017	0.0000	0.0000
	W1	-0.1085	0.4116	-0.0466	0.1142	0.0003	0.0007
	E1	-0.0276	0.0980	-0.0121	0.0298	0.0001	0.0002
	W2	0.2157	-0.0256	0.0553	-0.0108	0.0003	0.0001
	W3	-0.0580	0.2335	-0.0243	0.0606	0.0001	0.0004
	W4	0.1640	-0.0108	0.0420	-0.0059	0.0003	0.0000
	W5	0.1596	-0.0275	0.0409	-0.0103	0.0002	0.0001
	W6	-0.0542	0.1352	-0.0211	0.0350	0.0001	0.0002
	W7	-0.0328	0.2151	-0.0155	0.0559	0.0001	0.0003
	W8	0.1183	0.1560	0.0232	0.0374	0.0001	0.0002
	W9	0.2053	-0.1943	0.0597	-0.0536	0.0004	0.0003
	W10	0.0984	0.1532	0.0199	0.0375	0.0001	0.0002
	W11	0.0790	0.0807	0.0149	0.0185	0.0001	0.0001
	W12	0.1637	-0.1095	0.0473	-0.0307	0.0003	0.0002
	W13	0.1443	-0.1820	0.0422	-0.0496	0.0003	0.0003
HIRD	D	-0.0006	-0.0001	-0.0003	-0.0002	0.0000	0.0000
	Lp	-0.0022	0.0002	-0.0012	-0.0002	0.0000	0.0000
	W1	-0.0619	0.2975	-0.0310	0.1126	0.0002	0.0007
	E1	-0.0155	0.0089	-0.0078	0.0281	0.0000	0.0002
	W2	0.1605	-0.0148	0.0567	-0.0080	0.0003	0.0000

<u>Drift</u>

RAM Frame v11.2 DataBase: 329 Inn Blvd Expansion Building Code: IBC

Story	LdC	Disj	placement	S	tory Drift	D	rift Ratio
-	W4	0.1220	-0.0049	0.0432	-0.0036	0.0003	0.0000
	W5	0.1187	-0.0173	0.0419	-0.0084	0.0002	0.0000
	W6	-0.0332	0.1001	-0.0157	0.0366	0.0001	0.0002
	W7	-0.0173	0.1592	-0.0096	0.0595	0.0001	0.0004
	W8	0.0951	0.1186	0.0299	0.0421	0.0002	0.0003
	W9	0.1456	-0.1408	0.0552	-0.0540	0.0003	0.0003
	W10	0.0785	0.1157	0.0251	0.0419	0.0001	0.0002
	W11	0.0641	0.0622	0.0196	0.0212	0.0001	0.0001
	W12	0.1164	-0.0788	0.0441	-0.0302	0.0003	0.0002
	W13	0.1020	-0.1324	0.0386	-0.0509	0.0002	0.0003
SECOND	D	-0.0002	0.0001	-0.0002	0.0001	0.0000	0.0000
	Lp	-0.0010	0.0004	-0.0009	0.0004	0.0000	0.0000
	Ŵ1	-0.0308	0.1849	-0.0297	0.1041	0.0002	0.0006
	E1	-0.0077	0.0408	-0.0075	0.0246	0.0000	0.0001
	W2	0.1038	-0.0068	0.0606	-0.0064	0.0004	0.0000
	W3	-0.0168	0.1088	-0.0162	0.0602	0.0001	0.0004
	W4	0.0789	-0.0014	0.0460	-0.0028	0.0003	0.0000
	W5	0.0768	-0.0089	0.0449	-0.0069	0.0003	0.0000
	W6	-0.0175	0.0635	-0.0148	0.0354	0.0001	0.0002
	W7	-0.0077	0.0997	-0.0095	0.0549	0.0001	0.0003
	W8	0.0652	0.0765	0.0333	0.0403	0.0002	0.0002
	W9	0.0904	-0.0868	0.0576	-0.0499	0.0003	0.0003
	W10	0.0534	0.0738	0.0274	0.0391	0.0002	0.0002
	W11	0.0445	0.0410	0.0226	0.0214	0.0001	0.0001
	W12	0.0723	-0.0487	0.0456	-0.0286	0.0003	0.0002
	W13	0.0634	-0.0815	0.0408	-0.0463	0.0002	0.0003
FIRST	D	-0.0000	0.0000	-0.0000	0.0000	0.0000	0.0000
	Lp	-0.0000	0 0000	-0.0000	0.0000	0.0000	0.0000
	W1	-0.0011	0.0808	-0.0011	0.0808	0.0000	0.0005
	E1	-0.0003	0.0162	-0.0003	0.0162	0.0000	0.0001
	W2	0.0431	-0.0004	0.0431	-0.0004	0.0003	0.0000
	W3	-0.0006	0.0487	-0.0006	0.0487	0.0000	0.0003
	W4	0.0328	0.0014	0.0328	0.0014	0.0002	0.0000
	W5	0.0319	-0.0020	0.0319	-0.0020	0.0002	0.0000
	W6	-0.0027	0.0282	-0.0027	0.0282	0.0000	0.0002
	W7	0.0018	0.0449	0.0018	0.0449	0.0000	0.0003
	W8	0.0319	0.0362	0.0319	0.0362	0.0002	0.0002
	W9	0.0328	-0.0368	0.0328	-0.0368	0.0002	0.0002
	W10	0.0260	0.0347	0.0260	0.0347	0.0002	0.0002
	W11	0.0219	0.0196	0.0219	0.0196	0.0001	0.0001
	W12	0.0266	-0.0201	0.0266	-0.0201	0.0002	0.0001
	W13	0.0226	-0.0352	0.0226	-0.0352	0.0001	0.0002

Criteria, Mass and Exposure Data

RAM Frame v11.2 DataBase: 329 Inn Blvd Expansion

CRITERIA:

DIAPHRAGM DATA:

Story	Diaph #	Diaph Type
SIXTH	1	Rigid
FIFTH	1	Rigid
FOURTH	1	Rigid
THIRD	1	Rigid
SECOND	1	Rigid
FIRST	1	Rigid

Disconnect Internal Nodes of Beams:	Yes
Disconnect Nodes outside Slab Boundary:	Yes

1

1

1

STORY MASS DATA:

Includes Self Mass of:

Beams

Columns (Half mass of columns above and below) Walls (Half mass of walls above and below) Slabs/Deck

Calculated Values:

THIRD

FIRST

SECOND

Story	Diaph #	Weight	Mass	MMI	Xm	Ym	EccX	EccY
		kips	k-s2/ft	ft-k-s2	ft	ft	ft	ft
SIXTH	1	1070.0	33.23	145572	101.96	49.88	10.25	5.05
FIFTH	1	1114.1	34.60	156587	101.68	50.24	10.30	5.10
FOURTH	1	1113.5	34.58	156433	101.67	50.25	10.30	5.10
THIRD	1	1168.5	36.29	164603	101.68	50.26	10.30	5.10
SECOND	1	1172.9	36.43	165325	101.68	50.26	10.30	5.10
FIRST	1	1158.6	35.98	164444	101.68	50.93	10.30	5.10
Story	Diaph #	Comb	oine					
SIXTH	1	Ν	one					
FIFTH	1	Ν	one					
FOURTH	1	Ν	one					

None

None

None

Center of Rigidity

RAM Frame v11.2 DataBase: 329 Inn Blvd Expansion

CRITERIA:

Rigid End Zones:		Ignore Effects		
Member Force Or	utput:	At Face of Joint		
P-Delta:	Yes	Scale Factor:	1.00	
Ground Level:	Base			
Wall Mesh Criter	ia :			
Wall Elem	ent Type : !	Shell Element with I	No Out-of-Plane Stiffne	SS
Max. Allow	wed Distan	ce betwe <mark>en N</mark> odes (f	f) · 8.00	
		C	4.5.1.1.1	~

		Centers o	f Rigidity	Centers of Mass			
Level	Diaph. #	Xr	Yr	Xm	Ym		
		ft	ft	ft	ft		
SIXTH	1	102.35	49.78	101.96	49.88		
FIFTH	1	102.41	49.81	101.68	50.24		
FOURTH	1	102.50	49.84	101.67	50.25		
THIRD	1	102.30	49.88	101.68	50.26		
SECOND	1	101.92	49.92	101.68	50.26		
FIRST	1	101.92	49.91	101.68	50.93		

ABP Wall Panel Specifications

Thermal Properties - Test Data

Description:	asymmetrical with expa	similar in appearance to the IPP panel. The exterior profile is nded flat areas to reduce shadow lines. As with all IPS s fabricated in the Mesa profile.
Dimensions:	The manufactured net w provided in 24 or 22 ga Panel is 30'0". <u>Contact IF</u>	in 2", 2-1/2", or 3", thick and can achieve R-Values to 23.9. ridth can be 36" or 42". Typical embossed exterior skins are uge steel. The maximum recommended length for the ABP <u>PS</u> for panel length options. Panel connections are made into concealed clips and fasteners.
Material:	Exterior -	24 ga. steel (std). 22 ga. also available.
	Interior -	26 ga. steel (std). 24 and 22 ga. also available.
Finish Options:	Exterior -	Signature® 200 (silicone polyester) Signature® 300 (Kynar 500®/Hylar 5000®)
	Interior -	USDA White (standard) Signature® 200 (silicone polyester)
Colors:	IPS Panel Color and Fini	<u>sh Guide</u>
Texture:	The exterior and interior	skins are embossed only.
Length:		nded length is 30' 0". <u>Contact IPS</u> for panel length options. Is for stack joint applications for walls over 30' 0" high.
Fasteners:	Concealed, 14 ga. steel	clip.

Thermal Properties

ABP Wall Panel												
Product Code	Thickness	"U" Factor	"R" Factor									
ABP 200	2"	.063	16.0									
ABP 250	2 1/2"	.050	19.9									
ABP 300	3"	.042	23.9									

Note: Insulation values determined by tests conducted in accordance with ASTM C236 at a mean temperature of 75 degrees F., winter condition corrected to 15 mph outside and still inside.

5500 ISOWEB® WINDOW

THERMAL TRANSMITTANCE

NOVEMBER, 2007

E.C. 97902-08

For some regions and projects there may be minimum energy efficiency requirements for the building envelope, and its components, including windows. The shading coefficient (SC) and the thermal transmittance (U - value) of the window is then required to determine whether the building design complies with the specified energy requirements. Shading coefficient depends on the glass selected and should be obtained from the glass supplier. The U - value of the window varies with the type of glass and sealed unit edge construction, the window frame, and the relative areas of these components.

The window thermal transmittance values (U - values) shown in the chart below are based on CSA - A440.2 "Energy Performance Evaluation of Windows and Sliding Glass Doors." U - values of the centre of glass, edge of glass, and frame areas were computed using the VISION and FRAME thermal simulation programs. Overall window U - values were calculated using the following relationship:

 $U_W = (U_C A_C + U_e A_e + U_f A_f)/A_W$

U_W = U-value of complete window product

- U_C = calculated centre of glass U-value
- Ue = calculated edge of glass U-value
- Uf = calculated frame U-value
- A _C = centre of glass area
- A e = edge of glass area
- A f = frame area
- A w = total window area

OVERALL WINDOW U-VALUE (Uw)

For fixed and operating window configurations as shown with height (h) equal to width (w).

1 - low-e coating emittance = 0.1

2 - low-e coating emittance = 0.03

3 - Edgetech Super "U" Spacer ®

NOTES: THE ABOVE SEALED UNIT GLAZING OPTIONS ARE PRESENTED FOR THE PURPOSES OF ILLUSTRATING THERMAL PERFORMANCE CAPABILITIES.

FOR WINDOWS WITH HEIGHT NOT EQUAL TO WIDTH, WHEN ADDING INTERMEDIATE VERTICALS OR HORIZONTALS, OR DIFFERENT GLASS INFILL, THE OVERALL WINDOW U - VALUE MAY VARY.

THE SPECIFIER SHOULD SELECT GLASS TO MEET THE PERFORMANCE REQUIREMENTS OF THE PROJECT.

HVAC Equipment Sizing Calcs

"Genius is the infinite capacity for taking pains." - Jane Ellis Hopkins

"Problems are messages." Shakti Gawain

Sam Dardano, a Boulder-based code official who chairs the committee of statewide mechanical and plumbing inspectors, reports that by early next year roughly 75 percent of the building jurisdictions in Colorado will be operating under the International Codes. If that's true, here's a key item from the code that can help, not just hurt.

The International Energy Conservation Code (IECC) requires that load calculations be used to size heating and cooling equipment. 11' properly implemented, this could reduce the widespread tendency to oversize equipment. Yet both builders and code officials are uncertain how to evaluate such calculations to assure the results are accurate.

This article presents 10 top items to look for when evaluating HVAC sizing calcs.

Background

An article titled "Bigger is Not Better," Published in the May-June 1995 Home Energy magazine, was one of the first to draw attention to the widespread problem of residential equipment oversizing. A study of design. construction and performance issues in northern Colorado hones built in the mid- to late1990S (<u>fcgov.com/utilities/es-performancestudy.php</u>) was the most recent to confirm that heating and cooling equipment tends to be oversized by substantial margins in this part of the country. The Colorado study showed heating systems were moderately oversized while air conditioning systems were nearly twice as large as needed - averaging 158 percent and 208 percent of design loads, respectively.

Furnace sizing ratios ranged from 106 percent to 234 percent of design heating requirements. Greater oversizing factors were typically observed in homes with insulated basements versus homes with uninsulated basements, suggesting that furnace-sizing practice had not yet reflected the reduction in heating loads due to basement insulation.

Cooling systems ranged from about 143 percent to 322 percent of design cooling requirements.

Note that for every hour of the year when heating and cooling requirements are less demanding than design conditions, the equipment is even further oversized.

Over-sized equipment requires more air flow and larger ductwork; without this, equipment will not operate within manufacturer specifications. Even if ductwork sizing is increased, the oversized equipment will short-cycle. These problems decrease efficiency and equipment life while compromising homeowner comfort. Utilities may be burdened with higher summer peak loads and more blown transformers. Builders and homeowners pay more for oversized systems. Over-sizing typically occurs when contractors use "rules of thumb," such as "I toil of AC needed per 600 square feet" or other simple sizing approach based on their own experience. In 2000, Hank Rutkowski. author of ACCA Manual J: Residential Load Calculation, estimated that only 5 to 10 percent of HVAC systems had calculations performed to help size systems. Furthermore, even when load calculations were performed, contractors were inclined to include fudge factors based on past customer complaints about comfort. "I've never been sued for installing too large a system," contractors have stated repeatedly.

In the 8th edition, published in April 2002, Rutkowski wrote, "Manual J calculations should be aggressive, which means the design should take full advantage of legitimate opportunities to minimize the size of estimated loads. In this regard, the practice of manipulating the outdoor design temperature, not taking full credit for efficient construction features, ignoring internal and external window shading devices, and then applying an arbitrary 'safety factor' is indefensible."

It should be noted that oversizing does not address many other related problems that cause homeowners to complain. As noted in the Colorado study. these include problems with excessive solar gain, insulation and air sealing flaws, lack of ductwork design and many compromises in duct installation (constrictions. leakage, pressure imbalances, no way to balance air flow among branch ducts).

Does the above sound a little academic" It doesn't have to be. Aspen Homes now installs 40,000 Btu to 60,000 Btu furnaces in all their high-performance homes, replacing 100,000 and 120,000 Btu units, respectively, saving \$40 to \$50 a pop: their air conditioners are similarly downsized, saving at \$250-\$500.

Ten key sizing factors

1. Use acceptable sizing calculation tool: Most jurisdictions allow calculations based on Manual J (Air Conditioning Contractors of America - an industry trade group). Manual J methods are based on the ASHRAE Handbook of Fundamentals. The 8th Edition of Manual J is the most current; it has been modified to reduce Manual Fs past tendency to enable over-sizing.

2. Outdoor design temperatures: There is considerable room for error here; check to assure the proper winter/summer outdoor design temperatures are used. The IECC specifies using $\degree97.5$ percent values for winter and 2.5 percent values for summer, from tables in the ASHRAE Handbook of Fundamentals." (97.5 percent means during the average winter, the temperature will remain above that temperature 97.5 percent of the time.) Unfortunately, 97.5 percent and 2.5 percent values aren't available in the ASHRAE Handbook any longer. Contact E '-Star (see contact info below) for the comparable list of design temperatures.

In most Denver areas. the winter design temperature should be within a few degrees of 0 (leg. F, and the summer design temperature should he about 92 degrees.

3. Indoor design temperatures: Check to assure that proper indoor design temperatures are used (70 deg. F winter and 75 deg. F summer).

4. Window orientation: While heating equipment sizing is unaffected by window orientation. the impact of orientation on cooling loads can be substantial. In fact, in a new home built to the TECC standard, solar gains through windows are typically the home's largest contributor to peak

cooling load up to 50 percent. For production builders, orientation should he considered when calculating cooling equipment size for the same model home placed on lots with different orientations. It should he noted that some homes with predominantly west-facing glass will not be comfortable. during some climate conditions. regardless of system size, without very smart window choices.

5. Reasonable air infiltration assumptions. A few jurisdictions insist that high air-leakage rates be assumed. Many contractors assume high leakage rates. Often, projected house leakage is overestimated, again contributing to over-sizing. House tightness testing results for geographic locations and specific builders should he factored in. A reasonable air leakage assumption: between 0.35 to 0.50 natural air-changes per hour, Unless a builder has data specific to their construction practices indicating they build tighter (or looser). (Engle Homes averages 0.12 air changes - four times tighter than the average home.)

6. Proper energy features. The R-values. U-values and window Solar Heat Gain Coefficients (SHGC) specified on the plans should match those used in the calculations. Foundation insulation and window values are prone to incorrect entry.

7. Duct losses. One figure is entered in the calculation to represent conductive losses from ducts in unconditioned spaces. It is otherwise specified and assumed that ductwork will be "substantially leak free," per code. (The IECC specifics this as being, "5 percent or less of the air handler's rated air-flow when the return grilles and supply registers are sealed off' and the entire distribution system-including the air handler cabinet is pressurized to 0.1-inch w.g. 125 pascals. Unfortunately, random testing in the northern Colorado showed that ductwork leakage averaged 130 percent of the average air-handler's rated air flow). Today, a small but growing number of Colorado HVAC contractors are developing the expertise to design and build tight ductwork, then buying equipment to perform pressure measurements that confirm their results. Duct losses are highly dependent on duct location. The number of ducts in exterior walls, garage ceilings, vented crawl spaces and attics is a critical factor, with respect to losses from both duct leakage and air infiltration. Ducts in the exterior of the envelope must be effectively insulated to a minimum of R8. (IECC 2003)

8. Climatic moisture load factor. The difference between the moisture content of the outdoor air and desired interior humidity is referred to as "design grains." Calculations should use "design grains" applicable to a particular jurisdiction (see Manual J). Latent loads are typically a tiny part of the design cooling load in this climate. In the metro area. designs grains are approximately -40. Latent loads for summer cooling typically in the 1.000 to 2.000 Btu/hr range (varying with house size).

9. Assume shading devices. Even for new homes. the presence of reasonable internal shading devices should be assumed. People can he expected to close their window cover day. Built-in external shading (overhangs, adjacent buildings, etc.) should also be factored in.

10. Capacity margin of selected equipment. This maximum sizing guideline should be followed: "The total capacity (sensible plus latent) of the cooling equipment should not exceed the total load (sensible plus latent) by more than 15 percent for cooling-only applications and warm-climate heat pump applications: or by more than 25 percent for cold-climate applications." (Manual J. 8th Edition)

Blower Coils Packaged Climate Changer™ AHU M-Series and T-Series Climate Changer™ AHU

Custom Climate Changer

CFM Range	400 - 3,000	1,500 - 15,000	1,500 - 60,000	1500 - 200,000 +
Application	Comfort	Comfort	Comfort	Comfort or Process
Aspect Ratio	Fixed	Fixed	Fixed	Variable
Fan Type	FC	FC	FC/BC/AF/Plenum/Q	All
Coil Location	Draw-Thru	Draw-Thru	Draw or Blow-Thru	Draw or Blow-Thru
Construction Matl	Galvanized	Galvanized	Galvanized	Flexible
Wall Construction	Single Wall	Single/Double	Optional Double	Flexible
Filtration	1" or 2"	2" or 4"	Flexible	Full Flexibility
Coil Flexibility	Row	Limited Fin/Row	Flexible	Full Flexibility
S.P. Capability	<2.5 in. wg	<4.0 in. wg	-4.0 to +6.0 in. wg	-12.0 to +12.0 in. wg
Thermal Break	None	None	Gasket	Yes
Unit Flexibility	Low	Medium	Medium - High	High
ICS Controls	ZN010, 510, 520	AH540	AH540/MP580	MP580

Application	Comparison Space Type	Coll Onits	Cinate Change	T-Series AML	Contraction And
	Offices				
	Hospitals/Labs	0	0		*
	Manufacturing			*	
	Industrial Processes	0	0	*	*
	Schools	*	*	*	*
	Hotels/Motels		*	*	0
TRANE	Retails	*	*		0
	* Targeted Applications	Co	mmon Application:	s O Oc	casional Application

VAV | FAN POWERED TERMINAL UNITS

KQFP | ULTRA QUIET, PARALLEL FLOW

KQFP DISCHARGE SOUND PERFORMANCE DATA

▼ KQFP, DISCHARGE SOUND DATA

UNITS	
ERMINAL	
/ERED TE	
N POW	
A	

Init Size Flow Rate Min △ Ps Octave Band Sound Power, Lw Lp Sound Po								Pri	mary	@0	.5" /	Ps			Pri	mary	@1	.0" /	Ps			Pri	mary	@2	.0" /	Ps	
CFM (L/s) ''WG (Pa) 2 3 4 5 6 7 NC 2 3 4 3			Flow	Rate	Min	∆ Ps						e.	Lp							Lp							Lp
2 6 200 (94) 0.050 (12.4) 44 43 39 33 30 28 - 47 44 39 33 32 - 49 45 40 300 (142) 0.113 (28.0) 51 51 45 39 43 30 - 54 51 46 40 37 35 - 56 52 47 400 (189) 0.200 (49.8) 57 56 50 43 36 31 - 59 57 51 44 40 38 - 66 61 57 51 300 (170) 0.053 (13.2) 47 49 45 38 32 28 - 51 52 47 40 36 33 - 55 50 55 50 50 45 39 33 - 63 60 53 48 42	120	0120	CFM	(L/s)	"WG	(Pa)	2	3	4	5	6	7	NC	2	3	4	5	6	7	NC	2	3	4	5	6	7	NC
2 6 300 (142) 0.113 (28.0) 51 51 45 39 34 30 - 54 51 46 40 37 35 - 56 52 47 400 (189) 0.200 (49.8) 57 56 50 43 36 31 - 59 57 51 44 40 36 - 61 57 51 500 (236) 0.313 37 49 45 38 22 28 - 51 52 47 40 36 3 - 52 47 40 36 3 - 52 47 40 36 3 - 52 47 40 36 3 - 52 47 40 36 36 60 52 47 41 34 2 36 36 60 53 49 43 42 37 0			100	(47)	0.013	(3.1)	32	31	27	23	23	24		35	31	28	24	26	29	-	37	32	28	25	29	34	-
400 (189) 0.200 (49.8) 57 56 50 43 36 31 - 59 57 51 44 40 36 - 51 500 (236) 0.313 (77.8) 60 60 54 46 39 33 - 63 61 54 47 42 37 - 65 61 55 30 63 61 54 47 49 45 38 32 28 - 51 52 47 40 36 33 - 65 50 55 50 540 (255) 0.119 (29.6) 54 54 88 32 28 51 52 47 40 36 33 - 63 60 53 48 42 37 - 67 63 54 50 44 39 - 71 66 57 55 51 44		1	200	(94)	0.050	(12.4)	44	43	39	33	30	28	-	47	44	39	34	33	32	-	49	45	40	36	36	37	-
500 (236) 0.313 (77.8) 60 60 54 46 39 33 - 63 61 54 47 42 37 - 65 61 55 3 8 180 (85) 0.013 (3.3) 35 41 40 31 26 23 - 39 43 42 33 29 28 - 43 46 45 360 (170) 0.053 (13.2) 47 49 45 38 32 28 - 51 52 47 40 36 33 - 62 60 53 700 (245) 0.119 (29.6) 54 54 48 42 36 31 - 58 57 50 44 39 2 67 63 54 50 44 39 2 71 66 55 900 (425) 0.311 61	2	6	300	(142)	0.113	(28.0)	51	51	45	39	34	30		54	51	46	40	37	35		56	52	47	41	40	39	-
3 180 (85) 0.013 (3.3) 35 41 40 31 26 23 - 39 43 42 33 29 28 - 43 46 45 360 (170) 0.053 (13.2) 47 49 45 38 32 28 - 51 52 47 40 36 33 - 55 55 50 540 (255) 0.119 (29.6) 54 54 48 42 36 31 - 58 57 50 45 39 33 - 63 60 53 48 42 37 - 67 63 54 50 44 39 - 71 66 55 900 (425) 0.31 (82.3) 63 61 54 30 33 - 63 50 54 44 45 56 52 40			400	(189)	0.200	(49.8)	57	56	50	43	36	31	- 437	59	57	51	44	40	36	191	61	57	51	46	43	41	120
38 360 (170) 0.053 (13.2) 47 49 45 38 32 28 - 51 52 47 40 36 33 - 55 50 30 540 (255) 0.119 (29.6) 54 54 48 42 36 31 - 58 57 50 45 39 35 - 62 60 53 900 (425) 0.331 (82.3) 63 60 52 47 41 34 - 67 63 54 50 44 39 - 71 66 57 900 (425) 0.331 (82.3) 51 47 43 37 30 - 56 53 49 45 40 34 - 58 56 52 100 (547) 0.222 (55.3) 66 61 54 52 48 41 - 6			500	(236)	0.313	(77.8)	60	60	54	46	39	33	-	63	61	54	47	42	37	-	65	61	55	49	45	42	-
3 8 540 (255) 0.119 (29.6) 54 48 42 36 31 - 58 57 50 45 39 35 - 62 60 53 720 (340) 0.212 (52.7) 59 58 50 45 39 33 - 63 60 53 48 42 37 - 67 63 55 50 45 44 49 - 71 66 57 900 (425) 0.331 (82.3) 63 60 52 47 41 34 - 67 63 54 50 44 49 - 71 66 57 800 (274) 0.056 (13.8) 53 51 47 43 37 30 - 56 53 49 45 40 34 45 46 40 36 45 51 44 40			180	(85)	0.013	(3.3)	35	41	40	31	26	23		39	43	42	33	29	28		43	46	45	36	33	33	-
4 720 (340) 0.212 (52.7) 59 58 50 45 39 33 - 63 60 53 48 42 37 - 67 63 55 900 (425) 0.331 (82.3) 63 60 52 47 41 34 - 67 63 54 50 44 39 - 71 66 57 290 (137) 0.014 (3.5) 40 41 40 33 26 20 - 43 43 42 36 29 23 - 45 46 45 580 (274) 0.056 (13.8) 53 51 47 43 37 30 - 56 53 49 45 40 34 - 58 56 52 800 (411) 0.222 (53.3) 66 157 55 51 44 20 71		1	360	(170)	0.053	(13.2)	47	49	45	38	32	28	-	51	52	47	40	36	33	-	55	55	50	43	39	37	-
900 (425) 0.331 (82.3) 63 60 52 47 41 34 - 67 63 54 50 44 39 - 71 66 57 4 10 (137) 0.014 (3.5) 40 41 40 33 26 20 - 43 43 42 36 29 23 - 45 46 45 580 (274) 0.056 (13.8) 53 51 47 43 37 30 - 56 53 49 45 40 34 - 58 56 52 870 (411) 0.125 (31.1) 61 57 51 48 43 36 - 63 59 54 51 46 40 34 42 20 71 66 59 145 30 34 38 31 42 38 32 52	3	8	540	(255)	0.119	(29.6)	54	54	48	42	36	31	182	58	57	50	45	39	35		62	60	53	47	43	40	-
4 290 (137) 0.014 (3.5) 40 41 40 33 26 20 - 43 43 42 36 29 23 - 45 46 45 580 (274) 0.056 (13.8) 53 51 47 43 37 30 - 56 53 49 45 40 34 - 58 56 52 870 (411) 0.125 (31.1) 61 57 51 48 43 36 - 63 59 54 51 46 40 - 66 62 56 1160 (547) 0.222 (55.3) 66 61 54 52 48 41 - 69 64 57 55 51 44 22 73 67 59 58 54 48 25 75 69 61 420 (198) 0.014 (3.4			720	(340)	0.212	(52.7)	59	58	50	45	39	33	•	63	60	53	48	42	37		67	63	55	50	46	42	-
4 10 580 (274) 0.056 (13.8) 53 51 47 43 37 30 - 56 53 49 45 40 34 - 58 56 52 870 (411) 0.125 (31.1) 61 57 51 48 43 36 - 63 59 54 51 46 40 - 66 62 56 1450 (684) 0.348 (86.5) 70 64 57 55 51 44 22 73 67 59 58 54 48 25 75 69 61 420 (198) 0.014 (3.4) 38 41 42 33 20 2 2 43 45 45 37 29 26 48 49 49 40 (198) 0.014 (3.4) 38 41 42 35 28 53 5			900	(425)	0.331	(82.3)	63	60	52	47	41	34	-	67	63	54	50	44	39	-	71	66	57	52	48	44	23
4 10 870 (411) 0.125 (31.1) 61 57 51 48 43 36 - 63 59 54 51 46 40 - 66 62 56 1160 (547) 0.222 (55.3) 66 61 54 52 48 41 - 69 64 57 55 51 44 20 71 66 59 1450 (684) 0.348 (86.5) 70 64 57 55 51 44 22 73 67 59 58 54 48 25 75 69 61 420 (198) 0.014 (3.4) 38 41 42 33 25 20 - 43 45 45 37 29 26 - 48 49 49 420 (198) 0.015 (13.7) 48 47 47 42 55 <			290	(137)	0.014	(3.5)	40	41	40	33	26	20		43	43	42	36	29	23		45	46	45	38	32	27	-
1160 (547) 0.222 (55.3) 66 61 54 52 48 41 - 69 64 57 55 51 44 20 71 66 59 1450 (684) 0.348 (86.5) 70 64 57 55 51 44 20 71 66 59 420 (198) 0.014 (3.4) 38 41 42 33 25 20 - 43 45 45 37 29 26 - 48 49 49 840 (396) 0.055 (13.7) 48 47 47 42 35 28 - 53 51 51 45 39 34 - 58 55 54 1260 (595) 0.124 (30.9) 54 51 50 46 41 33 - 59 55 54 49 45 38 - <			580	(274)	0.056	(13.8)	53	51	47	43	37	30	1231	56	53	49	45	40	34		58	56	52	48	43	37	120
1450 (684) 0.348 (86.5) 70 64 57 55 51 44 22 73 67 59 58 54 48 25 75 69 61 420 (198) 0.014 (3.4) 38 41 42 33 25 20 - 43 45 45 37 29 26 - 48 49 49 840 (396) 0.055 (13.7) 48 47 47 42 35 28 - 53 51 51 45 39 34 - 58 55 54 1260 (595) 0.124 (30.9) 54 51 50 46 41 33 - 59 55 54 49 45 38 - 64 59 57 1680 (793) 0.221 (54.9) 58 53 50 45 36 - 63 <	4	10	870	(411)	0.125	(31.1)	61	57	51	48	43	36	-	63	59	54	51	46	40	-	66	62	56	53	49	43	-
420 (198) 0.014 (3.4) 38 41 42 33 25 20 - 43 45 45 37 29 26 - 48 49 49 840 (396) 0.055 (13.7) 48 47 47 42 35 28 - 53 51 51 45 39 34 - 58 55 54 1260 (595) 0.124 (30.9) 54 51 50 46 41 33 - 59 55 54 49 45 38 - 64 59 57 1680 (793) 0.221 (54.9) 58 53 53 50 45 36 - 63 57 56 53 49 42 - 68 61 59 57 55 52 44 - 71 63 61 2100 (991) 0.345 (85		1	1160	(547)	0.222	(55.3)	66	61	54	52	48	41		69	64	57	55	51	44	20	71	66	59	57	54	48	23
840 (396) 0.055 (13.7) 48 47 47 42 35 28 - 53 51 51 45 39 34 - 58 55 54 12 1260 (595) 0.124 (30.9) 54 51 50 46 41 33 - 59 55 54 49 45 38 - 64 59 57 1680 (793) 0.221 (54.9) 58 53 50 45 36 - 63 57 56 53 49 42 - 68 61 59 2100 (991) 0.345 (85.7) 61 55 54 52 48 39 - 66 59 57 55 52 44 - 71 63 61 570 (269) 0.015 (3.7) 45 48 46 43 37 31 - <td< td=""><td></td><td></td><td>1450</td><td>(684)</td><td>0.348</td><td>(86.5)</td><td>70</td><td>64</td><td>57</td><td>55</td><td>51</td><td>44</td><td>22</td><td>73</td><td>67</td><td>59</td><td>58</td><td>54</td><td>48</td><td>25</td><td>75</td><td>69</td><td>61</td><td>60</td><td>57</td><td>51</td><td>28</td></td<>			1450	(684)	0.348	(86.5)	70	64	57	55	51	44	22	73	67	59	58	54	48	25	75	69	61	60	57	51	28
5 12 1260 (595) 0.124 (30.9) 54 51 50 46 41 33 - 59 55 54 49 45 38 - 64 59 57 1680 (793) 0.221 (54.9) 58 53 50 45 36 - 63 57 56 53 49 42 - 68 61 59 2100 (991) 0.345 (85.7) 61 55 54 52 48 39 - 66 59 57 55 52 44 - 71 63 61 570 (269) 0.015 (3.7) 45 41 39 34 27 21 - 49 46 44 38 31 26 - 54 50 48 1140 (538) 0.059 (14.7) 54 48 46 43 37 31 <t< td=""><td>Т</td><td></td><td>420</td><td>(198)</td><td>0.014</td><td>(3.4)</td><td>38</td><td>41</td><td>42</td><td>33</td><td>25</td><td>20</td><td>1-2</td><td>43</td><td>45</td><td>45</td><td>37</td><td>29</td><td>26</td><td></td><td>48</td><td>49</td><td>49</td><td>40</td><td>33</td><td>31</td><td></td></t<>	Т		420	(198)	0.014	(3.4)	38	41	42	33	25	20	1-2	43	45	45	37	29	26		48	49	49	40	33	31	
1 1			840	(396)	0.055	(13.7)	48	47	47	42	35	28	•	53	51	51	45	39	34	-	58	55	54	48	43	39	-
2100 (991) 0.345 (85.7) 61 55 54 52 48 39 - 66 59 57 55 52 44 - 71 63 61 570 (269) 0.015 (3.7) 45 41 39 34 27 21 - 49 46 44 38 31 26 - 54 50 48 1140 (538) 0.059 (14.7) 54 48 46 43 37 31 - 59 53 51 47 42 36 - 63 58 56 120 (807) 0.133 (33.0) 59 53 51 48 44 36 - 64 58 56 52 48 41 - 68 61 59 56 52 48 41 - 68 62 60 1200 (1070) 0.236 (5	5	12	1260	(595)	0.124	(30.9)	54	51	50	46	41	33	-	59	55	54	49	45	38	-	64	59	57	53	49	44	
6 570 (269) 0.015 (3.7) 45 41 39 34 27 21 - 49 46 44 38 31 26 - 54 50 48 140 (538) 0.059 (14.7) 54 48 46 43 37 31 - 59 53 51 47 42 36 - 63 58 56 1710 (807) 0.133 (33.0) 59 53 51 47 42 36 - 63 58 56 2280 (1076) 0.236 (58.7) 63 56 52 48 41 - 68 61 59 56 52 45 - 72 66 63 2280 (1076) 0.236 (58.7) 63 56 54 52 48 40 - 68 61 59 56 52 45 - <t< td=""><td></td><td></td><td>1680</td><td>(793)</td><td>0.221</td><td>(54.9)</td><td>58</td><td>53</td><td>53</td><td>50</td><td>45</td><td>36</td><td></td><td>63</td><td>57</td><td>56</td><td>53</td><td>49</td><td>42</td><td>2.52</td><td>68</td><td>61</td><td>59</td><td>56</td><td>53</td><td>47</td><td>572</td></t<>			1680	(793)	0.221	(54.9)	58	53	53	50	45	36		63	57	56	53	49	42	2.52	68	61	59	56	53	47	572
1140 (538) 0.059 (14.7) 54 48 46 43 37 31 - 59 53 51 47 42 36 - 63 58 56 140 (538) 0.059 (14.7) 54 48 46 43 37 31 - 59 53 51 47 42 36 - 63 58 56 1710 (807) 0.133 (33.0) 59 53 51 48 44 36 - 64 58 50 52 48 41 - 68 62 60 2280 (1076) 0.236 (58.7) 63 56 52 48 40 - 68 61 59 56 52 45 - 72 66 63 2280 (1076) 0.236 (58.7) 63 56 54 52 48 40 - 68			2100	(991)	0.345	(85.7)	61	55	54	52	48	39	- 24	66	59	57	55	52	44	1	71	63	61	59	56	50	23
6 14 1710 (807) 0.133 (33.0) 59 53 51 48 44 36 - 64 58 56 52 48 41 - 68 62 60 2280 (1076) 0.236 (58.7) 63 56 52 48 41 - 68 61 59 56 52 45 - 72 66 63 740 (349) 0.014 (3.5) 47 43 38 31 23 - 52 47 47 42 35 28 - 56 51 51 1480 (698) 0.056 (13.9) 58 52 50 47 42 35 51 46 39 - 67 60 59	T		570	(269)	0.015	(3.7)	45	41	39	34	27	21	-	49	46	44	38	31	26	-	54	50	48	42	35	32	-
2280 (1076) 0.236 (58.7) 63 56 52 48 40 - 68 61 59 56 52 45 - 72 66 63 740 (349) 0.014 (3.5) 47 43 43 38 31 23 - 52 47 47 42 35 28 - 56 51 51 1480 (698) 0.056 (13.9) 58 52 50 47 42 35 51 46 39 - 67 60 59			1140	(538)	0.059	(14.7)	54	48	46	43	37	31		59	53	51	47	42	36	-	63	58	56	51	46	41	-
740 (349) 0.014 (3.5) 47 43 43 38 31 23 - 52 47 47 42 35 28 - 56 51 51 1480 (698) 0.056 (13.9) 58 52 50 47 42 35 51 46 39 - 67 60 59	6	14	1710	(807)	0.133	(33.0)	59	53	51	48	44	36		64	58	56	52	48	41	141	68	62	60	56	52	47	
1480 (698) 0.056 (13.9) 58 52 50 47 42 35 - 62 56 55 51 46 39 - 67 60 59			2280	(1076)	0.236	(58.7)	63	56	54	52	48	40	100	68	61	59	56	52	45		72	66	63	60	56	50	24
1480 (698) 0.056 (13.9) 58 52 50 47 42 35 - 62 56 55 51 46 39 - 67 60 59																											
	T		740	(349)	0.014	(3.5)	47	43	43	38	31	23	141	52	47	47	42	35	28	-	56	51	51	45	38	32	240
		Í	1480	(698)	0.056	(13.9)	58	52	50	47	42	35	-	62	56	55	51	46	39	2.00	67	60	59	54	49	44	
7 16 2220 (1048) 0.126 (31.3) 64 57 55 52 49 42 - 68 61 59 56 52 46 - 73 65 64	7	16	2220	(1048)	0.126	(31.3)	64	57	55	52	49	42	120	68	61	59	56	52	46	20	73	65	64	60	56	50	25
2960 (1397) 0.224 (55.6) 68 61 58 56 53 46 - 73 65 63 60 57 51 25 77 69 67			2960	(1397)	0.224	(55.6)	68	61	58	56	53	46	-	73	65	63	60	57	51	25	77	69	67	63	60	55	31
3700 (1746) 0.349 (86.9) 71 64 61 59 57 50 23 76 68 65 63 60 55 29 80 72 70			3700	(1746)	0.349	(86.9)	71	64	61	59	57	50	23	76	68	65	63	60	55	29	80	72	70	66	64	59	35

All sound data is based on tests conducted in accordance with ARI 880-98. ΔPs is the difference in static pressure from inlet to discharge. Sound power levels are in dB, re 10-12 watts. Discharge sound power is the sound emitted from the unit discharge. NC application data is from ARI Standard 885-98 Appendix E, as a function of flow rate shown. Dash (-) indicates a NC is less than 20. See K-Select for specific sound data for optional liners; 1/2" dual density liner shown. See Engineering section for reductions and definitions. ARI rating points based on 0.25" WG external pressure.

▼ ARI CERTIFICATION RATING POINTS

Unit Size	Inlet Size	Primary CFM	Min. ∆Ps		Sound Power @ 1.5" ∆ Ps									
Size	3126	CFIM	AFS	2	3	4	5	6	7					
2	6	400	0.200	61	57	51	45	41	38					
3	8	700	0.200	64	62	53	49	44	39					
4	10	1100	0.200	69	65	57	55	50	44					
5	12	1600	0.200	68	61	57	55	52	45					
6	14	2100	0.200	69	62	60	57	53	46					
7	16	2800	0.200	75	67	65	61	58	52					

KQFP

© KRUEGER 200

VAV | FAN POWERED TERMINAL UNITS

KQFP | ULTRA QUIET, PARALLEL FLOW

KQFP RADIATED SOUND PERFORMANCE DATA

							Pri	mary	@0	.5" 4	Ps			Pri	mary	/@1	.0" /	Ps			Pri	mary	@ 2	.0" /	Ps	
	Inlet Size	Flow	Rate	Min	∆ Ps	C	octav I	ve Ba Powe			d	Lp	C			and S er, Lv		d	Lp	C			and S er, Lv		d	Lp
Size	Size	CFM	(L/s)	"WG	(Pa)	2	3	4	5	6	7	NC	2	3	4	5	6	7	NC	2	3	4	5	6	7	NC
		100	(47)	0.013	(3.1)	35	29	26	23	23	23	14	37	31	29	26	27	28	17-	39	33	31	29	31	33	-
		200	(94)	0.050	(12.4)	43	37	34	29	27	25	-	45	39	37	32	31	30		47	41	39	35	35	35	-
2	6	300	(142)	0.113	(28.0)	48	42	39	33	30	27		50	44	41	36	34	32		52	46	44	39	38	37	-
		400	(189)	0.200	(49.8)	51	46	42	36	31	28	() - (54	47	44	39	36	33	()	56	49	47	42	40	38	21
		500	(236)	0.313	(77.8)	54	48	44	38	33	28	-	56	50	47	41	37	33	21	58	52	49	44	41	38	24
		180	(85)	0.013	(3.3)	35	33	32	26	22	21	-	39	37	36	30	26	28	12	42	40	40	33	30	34	-
		360	(170)	0.053	(13.2)	44	40	38	33	29	26	() - ()	47	44	42	36	33	33	1	51	47	46	40	38	39	-
3	8	540	(255)	0.119	(29.6)	49	44	41	37	33	29		52	48	45	40	38	36	-	56	51	49	44	42	42	23
		720	(340)	0.212	(52.7)	52	47	44	39	36	31		56	51	48	43	41	38	21	59	54	51	47	45	44	26
		900	(425)	0.331	(82.3)	55	50	45	42	39	33		59	53	49	45	43	39	24	62	56	53	49	48	46	28
		290	(137)	0.014	(3.5)	39	34	32	25	19	16		43	37	35	29	22	21		47	40	38	32	26	26	-
		580	(274)	0.056	(13.8)	47	42	40	33	28	24	241	51	46	43	37	31	29	(14)	56	49	46	40	35	34	-
4	10	870	(411)	0.125	(31.1)	52	47	44	38	33	29	-	57	51	47	42	37	34	21	61	54	50	45	40	39	25
		1160	(547)	0.222	(55.3)	56	51	47	42	37	32	21	60	54	51	45	41	37	25	64	58	54	48	44	42	28
		1450	(684)	0.348	(86.5)	59	54	50	44	40	34	24	63	57	53	48	43	39	27	67	61	56	51	47	44	31
		420	(198)	0.014	(3.4)	38	37	34	32	26	20		41	40	38	35	30	25	1.5	44	43	42	38	33	30	1
		840	(396)	0.055	(13.7)	49	45	41	38	33	28	-	52	48	45	41	37	33	1.2	55	51	49	44	40	38	23
5	12	1260	(595)	0.124	(30.9)	55	49	45	42	37	32		58	53	49	45	40	37	23	61	56	52	48	44	42	27
		1680	(793)	0.221	(54.9)	59	53	47	44	40	35	21	62	56	51	47	43	40	26	66	59	55	51	47	46	30
		2100	(991)	0.345	(85.7)	63	55	49	46	42	38	26	66	58	53	49	45	43	30	69	61	57	52	49	48	34
		570	(269)	0.015	(3.7)	44	39	37	32	26	22		48	44	41	35	30	28	-	53	48	46	39	34	34	-
		1140	(538)	0.059	(14.7)	53	47	44	39	34	28	14	57	51	48	42	38	34	22	62	56	53	46	42	40	27
6	14	1710	(807)	0.133	(33.0)	58	51	48	43	39	32	22	63	55	52	47	43	38	27	67	60	57	50	47	44	32
		2280	(1076)	0.236	(58.7)	62	54	51	46	42	35	25	67	58	55	50	46	41	30	71	63	60	53	50	47	36
																	10								10	
		740	(349)	0.014	(3.5)	49	43	40	36	31	27		54	49	46	43	39	37	-	60	55	52	50	46	47	27
		1480	(698)	0.056	(13.9)	57	50	48	44	39	34	22	63	56	54	51	47	44	28	68	62	60	58	55	54	35
7	16	2220	(1048)	0.126	(31.3)	62	55	52	48	44	38	26	68	60	58	55	52	48	33	73	66	64	62	60	58	40
125		2960	(1397)	0.224	(55.6)	66	58	55	51	48	41	30	71	63	61	58	56	51	37	77	69	68	65	63	61	44
		3700	(1746)	0.349	(86.9)	68	60	58	54	51	44	33	74	66	64	61	58	54	40	80	72	70	68	66	64	47

▼ KQFP, RADIATED SOUND DATA

Air sound data is based on tests conducted in accordance with ART 800-90. ΔPS is the dimensional fractional pressure from met to discharge. Sound power levels are in dB, re 10-12 watts. Radiated sound power is the sound transmitted through the casing walls. NC application data is from ARI Standard 885-98 Appendix E, as a function of flow rate shown. Dash (-) indicates a NC is less than 20. See K-Select for specific sound data for optional liners; 1/2" dual density liner shown. See Engineering section for reductions and definitions. ARI rating points based on 0.25" WG external pressure.

▼ ARI CERTIFICATION RATING POINTS

		Primary CFM	Min ∆Ps	(0) 15 APS											
SIZE	SIZE	CEIVI	AFS	2	3	4	5	6	7						
2	6	400	0.200	54	48	45	39	37	35						
3	8	700	0.200	62	55	50	44	40	32						
4	10	1100	0.200	63	57	51	45	42	40						
5	12	1600	0.200	65	58	53	48	44	41						
6	14	2100	0.200	70	60	56	50	47	42						
7	16	2800	0.200	74	67	65	62	61	59						

RUEGER 2006

Figure 1: Overview of Design Brief Contents

This Design Brief is organized around key design considerations and components that affect the performance of VAV systems.

